

WBSAWF-B1 SUB ARC FLUX

	AWS A5.17 : F7	7A2-EM12K							
Classifications	AWS A5.17 : F6	6 A4 – EM12							
	F	7 A8 – F7 P8 –	EH1	2K					
	DIN 32 522 : B	FB 165 AC 12 I	MHP	5					
	EN760 : A	AB 1 67 AC H	5						
	WBS1 : AWS A	5.17 F7A2-EL1	2/B	SEN 1417	71-/	A:S1			
Wire Specifications	WBS1Si : AWS	A5.17 F7A2-EL	_12K	/ BSEN 1	41	/1-A : S1Si			
	WBS2SI : AWS	A5.17 F7A2-E			141	71-A: S2SI			
	VVB5351 : AVV5	A3.23 F/A0-E	G-G,	F/Po-EG	9-G				
Product Description	WBSAWF-B1 is	an agglomerat	ed fl	uoride-bas	SIC	sub arc flux.			
	WBSAWF-B1 is	s an agglomera	ated	fluoride-b	asi	c flux most s	uited to	weld m	edium-
Applications	tensile steels.	00							
	The neutral be	haviour of WBS	SAW	F-B1 in te	erm	s of silicon a	nd man	ganese	pick-up
	and burn off is s	suited for both V	VBS	1Si, WBS2	2Si	and WBS3Si	type wire	es.	
	The flux has be	en developed fo	or we	lding with	tw	in or multi-wire	e proces	ses.	
				-					
	The flux can be	welded on DC	and	AC.					
	Basicity to Boni	szewski : ~1.5							
	-								
	Packed in 25Kg	plastic bags or	220	Kg steel d	Irur	ns.			
Main Constituents of flux	CaO +	Al2O3 +		SiO ₂ +		CaF2			
	MgO	MnO		TiO2					
	200/	050/		200/		200/			
	30%	25%		20%		20%			

Typical All-Weld Chemical Analysis	С	Si	Mn	Мо	Cr	Ni
WBS1	0.05-0.09	0.10-0.20	0.45-0.75	-	-	-
WBS1Si	0.07-0.15	0.15-0.40	0.80-1.15	-	-	-
WBS2Si	0.07-0.15	0.15-0.40	0.80-1.30	-	-	-
WBS3Si	0.05-0.08	0.25-0.40	1.30-1.50	-	-	-

Mechanical Test Properties	PWHT	UTS (N/mm2)	Yield (N/mm2)	El (%)	C-V (J)	C-V (J)
WBS1	As welded	450-510	>350	>22	>40 (-20°C)	-
WBS1Si	As welded	480-530	>350	>22	>40 (-20°C)	-
WBS2Si	As welded	480-530	>380	>22	>40 (-20°C)	-
WBS3Si	As welded	540-640	>450	>25	>100(-20°C)	>70 (-40°C)

Storage and Re-Drying	Storage It is recommended that the WB range of sub arc fluxes are stored in a dry heated store at a minimum temperature of 18°C, and a maximum relative humidity of 60%.
	Re-drying Re-dry @ 350°C for 2 hours and then transfer to holding oven and hold @ 100 - 200°C.
	www.wballoys.co.uk